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Abstract
Marcus et al (2002 J. Phys.: Condens. Matter 14 L525) claim that thermody-
namic properties of materials under pressure must be computed using the Gibbs
free energy G, rather than the internal energy E . Marcus et al state that ‘The
minima of G, but not of E , give the equilibrium structure; the second deriva-
tives of G, but not of E , with respect to strains at the equilibrium structure give
the equilibrium elastic constants’. Both statements are incorrect.

Marcus et al [1] have presented an analysis of structural and elastic properties of solids subject
to compression under athermal (T = 0) conditions. They claim that the Gibbs free energy
G must be used at finite pressure P to find the equilibrium structure rather than the internal
energy E . In particular, they consider the epitaxial Bain path (EBP) that relates body-centred
cubic (bcc), body-centred tetragonal (bct), and face-centred cubic (fcc) structures for Fe at
100 GPa (see also [2]). They show that while G(c/a; p) along the EBP (with a and c the
two independent lattice parameters) yields a minimum at c/a = 1 (the bcc structure), the
minimum of E(c/a; p) along the EBP is displaced, at c/a = 0.95. This is a result of misusing
elementary thermodynamics [3]. There is a minimum principle for the internal energy E at
constant entropy S and volume V , for the enthalpy H = E + PV at constant S and P , for
the Helmholtz free energy A = E − T S at constant temperature T and V , and for the Gibbs
free energy G = E − T S + PV at constant P and T . There is no minimum principle for E
(or H , which is equivalent at T = 0, considered by Marcus et al) at constant P . The correct
analysis is shown in figure 3 of Stixrude et al [4], where E versus c/a is shown at constant
V for the EBP for Fe, and the extrema are at the bcc structure, as expected. There is nothing
wrong with minimizing G at constant P and T , but exactly the same results will be obtained
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for minimizing E at constant V and S. The resulting pressure P can always be obtained from
E , since P = − ∂ E

∂V |S. At T = 0 the constraint d S = 0 is trivial, since S = 0 at T = 0.
Marcus et al further assert that proper elastic constants must be calculated from second

Eulerian strain (ε) derivatives of G (defined as ci j in [1]) rather than the internal energy E(c̄i j).
Calculating the shear elastic constants c′ = (c11 − c12)/2 and c44 for bcc-iron using both
G and E(c̄′ and c̄44) they find a shear instability at 150 GPa using G(c′) but not for E(c̄′),
implying that previous computational estimates of elastic constants at pressure are incorrect,
and that pressure corrections need to be applied. To the contrary, computation of elastic
constants as prescribed by Marcus et al yields incorrect results. Marcus et al ignored the
fact that the pressure and shear stresses vary as a function of strain. They did not obtain
any thermodynamically valid second derivatives by their finite difference procedure, in which
they computed 1

V0
(E1(εi j) + P0V1(εi j) − E0 − P0V0); they did not even obtain the derivatives

1
V

∂2G(P)

∂εi ∂ε j
|εk···l , which are not in any case elastic constants, since the pressure and shear stresses

vary with their deformation εi j . This problem remains even if the second order coefficients
of a fit for a polynomial expansion in 1

V0
(E + P0V ) are obtained. The high pressure elastic

constants computed using their procedures [2, 5–8] are incorrect, although the resulting errors
may be small in some cases.

It is important to use the appropriate thermodynamic function for the appropriate
conditions, and as any student of elementary thermodynamics knows it is also important
to keep track of what is being held constant for a given partial derivative. Elastic constants
can be defined in various ways: (1) from the equations of motion (i.e. sound velocities),
(2) as derivatives of stress with respect to strain, or (3) as second derivatives of the internal
(giving the adiabatic elastic constants) or Helmholtz free energy (giving the isothermal elastic
constants) with respect to strain, holding the other strains constant [9]. Different constants
can also be derived depending on the use of finite or infinitesimal strain parameters. All of
these definitions are equivalent at zero pressure, but differ under applied stress. The different
definitions of elastic constants under applied stress remain sources of confusion [10]. Under
no conditions, however, is an elastic constant tensor properly defined from derivatives of H or
G with respect to strains, holding the other strains constant.

Kamb [11] even comes to the conclusion that it is not possible usefully to associate a Gibbs
free energy with a non-hydrostatically stressed solid; this is similarly stated by Wallace [12].
The definition of elasticity on the basis of G is not well founded. A problem arises, for example,
when considering phase equilibria of a fluid in contact with a crystal surface; the chemical
potential of components in the fluid in equilibrium with the solid vary according to the crystal
face for a stressed solid, indicating there is no unique definition of the Gibbs free energy for a
stresses solid [11].

Marcus et al state that the elastic constants in [13–15] are incorrect and require pressure
corrections. The elastic constants presented in [13, 15–17] are the elastic constants for wave
propagation; these are most easily measured, and are important in seismology and other
applications.

For isotropic initial stress the elastic constants for acoustic wave propagation and stress–
strain coefficients are equivalent (see section 5 in [9]). We will now illustrate that the expression
of strain–energy density can give the same elastic constants as the stress–strain relations for
volume conserving strains for a reference state with isotropic applied stress. We use the fourth
rank tensor notation from [9] for the elastic constants ci jkl (the stress–strain coefficients).
Consider the expression for strain–energy density from Barron and Klein [9]

�E

V
= −pεii +

1

2

(
ci jkl − 1

2
p

(
2δi jδkl − δilδ jk − δ jlδik

))
εi jεkl , (1)
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where δik is the Kronecker delta. Evaluating this expression, for example, for c1313

(corresponding to c̄55 = c̄44 in Voigt notation, as used in [1]), with the strain

ε(d) =
( 0 0 d

0 0 0
d 0 0

)
, (2)

with d the strain amplitude, one does indeed obtain a pressure correction term

�E

V
= 2

(
c1313 +

1

2
p

)
d2. (3)

This is the strain used in [14], and their elastic constants should consequently be corrected for
pressure to obtain wave propagation velocity.

However, by choosing specific volume conserving strains, such as those given in [15, 17],
corrections can be avoided. For the c1313 example we apply the monoclinic strain

ε(d) =
( 0 0 d

0 d2/(1 − d2) 0
d 0 0

)
; (4)

equation (1) becomes

�E

V
= − d2 p

1 − d2
+ 2

(
c1313 +

1

2
p

)
d2 +

1

2
c2222

d4

(1 − d2)2
+ 2c1322

d3

1 − d2
. (5)

For hexagonal and tetragonal systems c1322 = 0 and the final term in the sum on the right-hand
side is zero. Expanding this into a series of d yields

�E

V
= d2(2c1313) + O[d4], (6)

without any pressure correction term. This is also true for the other strains given in [15, 17].
Single-crystal elasticity is difficult to measure in high pressure experiments, especially

for opaque materials such as metals which are discussed in [1]. However, advances in optical
spectroscopy have made it possible to measure the Raman active phonon mode in hcp metals.
This optical mode and the shear elastic constant c1313 can be viewed as properties of the same,
nearly continuous phonon branch in an extended Brillouin zone scheme, and can be related by
a simple force constant model of phonon dispersion [18]. Results obtained for Fe and Re [15]
compare very favourably with experimental estimates [19, 20] over a wide pressure range,
corroborating that no pressure correction need be applied. Computed finite temperature elastic
constants for Ta [21] also agree well with sound velocities obtained under shock conditions
along the Hugoniot.

To conclude, the internal energy E in conjunction with its volume V and strain derivatives
defines the thermodynamics and elasticity of a material completely, even under applied stress.
Strain derivatives of the Gibbs free energy G, on the other hand, do not yield properly defined
elastic constants.
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